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The construction of the semiclassical trace formula for resonances with transverse electric polarization for
two-dimensional dielectric cavities is discussed. Special attention is given to the derivation of the two first terms
of Weyl’s series for the average number of such resonances. The formulas obtained agree well with numerical
calculations for dielectric cavities of different shapes.
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I. INTRODUCTION

Open dielectric cavities have attracted great interest in
recent years due to their numerous and potentially important
applications [1,2]. From a theoretical point of view, the crucial
difference between dielectric cavities and the much more
investigated case of closed quantum billiards [3–5] is that in the
latter the spectrum is discrete but in the former it is continuous.
Indeed, the main subject of investigations in open systems is
not the true spectrum but the spectrum of resonances defined
as poles of the scattering S matrix (see, e.g., [6,7]).

The wavelength of the electromagnetic field is usually much
smaller than any characteristic cavity size (except its height),
and semiclassical techniques are useful and adequate for a
theoretical approach to such objects. It is well known that the
trace formulas are a very powerful tool in the semiclassical
description of closed systems; see, e.g., [3–5]. Therefore, the
generalization of trace formulas to different open systems, in
particular to dielectric cavities, is of importance.

The trace formula for resonances with transverse magnetic
(TM) polarization in two-dimensional (2D) dielectric cavities
has been developed in Ref. [8] and shown to agree well with
experiments and numerical calculations [9,10]. This paper is
devoted to the construction of the trace formula for 2D dielec-
tric cavities but for transverse electric (TE) polarization. Due
to different boundary conditions the case of TE modes differs
in many aspects from that of TM modes. In particular, special
treatment is required for the resonances related to Brewster’s
angle [11] at which the Fresnel reflection coefficient vanishes.

Our main result is the asymptotic formula in the semiclas-
sical (or short wavelength) regime for the average number of
TE resonances for a 2D dielectric cavity with refraction index
n, area A, and perimeter L,

N̄TE(k) = A n2k2

4π
+ rTE(n)

L k

4π
+ o(k). (1)

Here N̄TE(k) is the mean number of resonances (defined below)
whose real part is less than k, the coefficient rTE is given by
the expression

rTE(n) = 1 + 1

π

∫ ∞

−∞
R̃TE(t)

(
n2

n2 + t2
− 1

1 + t2

)
dt

+ 2n√
n2 + 1

, (2)

and R̃TE is the Fresnel reflection coefficient for scattering on
a straight dielectric interface at imaginary momentum

R̃TE(t) =
√

n2 + t2 − n2
√

1 + t2

√
n2 + t2 + n2

√
1 + t2

. (3)

The plan of the paper is the following. In Sec. II the main
equations describing the TE modes are recalled. In Sec. III
the circular cavity is briefly reviewed: an exact quantization
condition is derived, which allows a direct semiclassical
treatment. In Sec. IV the first two Weyl terms for the resonance
counting function are derived. It is important to notice that, for
TE modes, one can have total transmission of a ray when the
incidence angle is equal to Brewster’s angle. This leads to
a special set of resonances, which are counted separately in
Sec. V. Section VI is devoted to a brief derivation of the
oscillating part of the resonance density. In Sec. VII our
obtained formulas are shown to agree well with numerical
computation for cavities of different shapes. In the Appendix
another method of deriving the Weyl series for TE polarization
based on Krein’s spectral shift formula is presented.

II. GENERALITIES

To describe a dielectric cavity correctly one should solve the
three-dimensional Maxwell equations. In many applications
the transverse height of a cavity, say along the z axis, is much
smaller than any other cavity dimensions. In this situation the
three-dimensional problem in a reasonable approximation can
be reduced to two 2D scalar problems (for each polarization
of the field) following the so-called effective index approxi-
mation; see, e.g., [12,13] for more details.

In the simplest setting, when one ignores the dependence
of the effective index on frequency, such a 2D approximation
consists in using the Maxwell equations for an infinite cylinder.
It is well known [11] that in this geometry the Maxwell
equations are reduced to two scalar Helmholtz equations inside
and outside the cavity:

(� + n2k2)�(�x ) = 0, �x ∈ D,
(4)

(� + k2)�(�x ) = 0, �x /∈ D,

where n is the refractive index of the cavity, D indicates
the interior of the dielectric cavity, and � = Ez for the TM
polarization and � = Bz for the TE polarization.
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The Helmholtz equations (4) have to be completed by the
boundary conditions. The field �(�x) is continuous across the
cavity boundary and its normal derivatives along both sides of
the boundary are related for two polarizations as [11]

∂�

∂ν

∣∣∣∣
from inside

=
{

∂�
∂ν

∣∣
from outside for TM,

n2 ∂�
∂ν

∣∣
from outside for TE.

(5)

Open cavities have no true discrete spectrum. Instead, we are
interested in the discrete resonance spectrum, which is defined
as the (complex) poles of the S matrix for the scattering on
a cavity (see, e.g., [7]). It is well known that the positions
of the resonances can be determined directly by solution of
the problem (4) and (5) by imposing the outgoing boundary
conditions at infinity:

�(�x) ∝ eik|�x|, |�x| → ∞. (6)

The set (4)–(6) admit complex eigenvalues k with Imk < 0,
which are the resonances of the dielectric cavity and are the
main object of this paper. Our goal is to count such resonances
for the TE polarization in the semiclassical regime. This will
provide us with the analog of Weyl’s law derived for closed
systems; see, e.g., [14].

III. CIRCULAR CAVITY

The circular dielectric cavity is the only finite 2D cavity
which permits an analytical solution. Let R be the radius of
such a cavity. Writing �(�x) = AJm(nkr)eimφ inside the cavity
and �(�x ) = BH (1)

m (kr)eimφ outside the cavity, it is plain to see
that, in order to fulfill the boundary conditions, it is necessary
that k is determined from the equation sm(x) = 0 with x = kR

and

sm(x) = x

[
1

n
J ′

m(nx)H (1)
m (x) − Jm(nx)H (1) ′

m (x)

]
, (7)

where Jm(x) [H (1)
m (x)] denotes the Bessel function (the Hankel

function of the first kind). Here and below the prime indicates
the derivative with respect to the argument. The factor x in
Eq. (7) is introduced for further convenience. Equation (7) can
also be seen as the quantization condition for the TE modes of
the circular dielectric cavity.

Using Jm(x) = [H (1)
m (x) + H (2)

m ]/2 the equation sm(x) = 0
can be rewritten in the form

Rm(x)Em(x) = 1, (8)

where

Em(x) = H (1)
m

H
(2)
m

(nx) (9)

and

Rm(x) =
H

(1) ′
m

H
(1)
m

(nx) − nH
(1) ′
m

H
(1)
m

(x)

−H
(2) ′
m

H
(2)
m

(nx) + nH
(1) ′
m

H
(1)
m

(x)
. (10)

In the semiclassical limit, x → ∞, the asymptotic formula for
the Hankel function [15] (0 � m � x) gives

H (1)
m (x) 	

√
2/π

(x2 − m2)1/4
ei�m(x)[1 + O(x−1)], (11)

where

�m(x) =
√

x2 − m2 − m arccos

(
m

x

)
− π

4
. (12)

In this way one obtains

Em −→
x→∞ e2i�m(nx) (13)

and

Rm(x) −→
x→∞ RTE

(
m

x

)
, (14)

where RTE is the standard TE Fresnel coefficient for the
scattering on an infinite dielectric interface,

RTE(t) =
√

n2 − t2 − n2
√

1 − t2

√
n2 − t2 + n2

√
1 − t2

. (15)

It may be worth recalling that from the usual WKB approach
the angular quantum number m is related to the classical
incidence angle θ by m = nx1 sin θ . The above formulas mean
that in the semiclassical limit, Eq. (8) takes the form

RTE

(
m

x

)
e2i�m(nx) = 1 (16)

or

�m(nx) = πp + i

2
ln RTE

(
m

x

)
(17)

with integer p = 0,1,2, . . ..
In fact, this equation is valid in the semiclassical limit

for closed and open circular cavities with other boundary
conditions as well. The only difference is that, instead of
the Fresnel reflection coefficient RTE, it is necessary to use
the reflection coefficient for the problem under consideration.
For example, for closed billiards, n = 1 and for Neumann
(Dirichlet) boundary conditions Rm(x) in Eq. (14) equals 1
(−1). For an open dielectric circular cavity with the TM
polarization Rm(x) → RTM(m/x), where RTM is the usual
Fresnel reflection coefficient for the TM modes [11],

RTM(t) =
√

n2 − t2 − √
1 − t2

√
n2 − t2 + √

1 − t2
. (18)

IV. WEYL TERMS

Semiclassical formulas like Eq. (16) are convenient to
obtain the average number of eigenvalues and resonances for
closed and open systems with different boundary conditions.
Let us consider first the simplest case of a closed billiard
with Neumann boundary conditions for which Rm(x) = 1. In
the semiclassical regime the eigenvalues for this model are
determined from Eq. (17) which reads

�m(x) = πp, (19)

where �m(x) is defined in Eq. (12) and p = 0,1, . . . is an
integer. Therefore, for fixed m, the number of eigenvalues less
than x is [Nm(x)] where [ · ] stands for the integer part and

Nm(x) = 1

π
�m(x) + 1. (20)
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1 is added as the integer p in Eq. (19) starts with 0 but [Nm(x)]
has to begin with 1.

Summing over all m leads to the total number of eigenvalues
less than x, usually called the counting function. This sum is
finite as the asymptotics (11) is valid when |m| � x. Finally

N (x) =
[x]∑

m=−[x]

[Nm(x)]. (21)

The averaged number of levels is determined from the equation

N̄ (x) =
x∑

m=−x

[
Nm(x) − 1

2

]
. (22)

With the needed precision one can substitute the summation
over m by an integral and, consequently, the averaged number
of eigenvalues for a circular billiard with Neumann boundary
conditions can be approximated as follows:

N̄ (x) = 2
∫ x

0

{
1

π

[√
x2 − m2 − m arccos

(
m

x

)]
+ 1

4

}
dm.

(23)

Using the formula∫ 1

0
[
√

1 − t2 − t arccos(t)]dt = π

8
, (24)

one gets

N̄ (x) = 1

4
x2 + 1

2
x + O(1). (25)

As for the circle the area is A = πR2 and the perimeter is
L = 2πR, these results can be rewritten in the standard form
Ref. [14]

N̄ (k) = Ak2

4π
+ r

Lk

4π
+ O(1) (26)

with r = 1. For Dirichlet boundary conditions similar argu-
ments show that 1/4 in Eq. (23) is substituted by −1/4 and
r = −1, as it should be Ref. [14].

For open cavities Eq. (16) gives complex solutions (res-
onances) k = k1 + ik2 with negative imaginary part, k2 < 0.
In the semiclassical limit for all investigated cases one has
|k2| 
 k1. Separating the imaginary and real parts in Eq. (17)
and using that

∂

∂x
�m(x) =

√
1 − m2

x2
, (27)

one gets that in the first order in k2 the real part of the resonance
position, k1 (or x1 = k1R), is determined from the following
real equation similar to Eq. (17):

�m(nx1) + δ(m/x1) = πp, p integer, (28)

where 2δ(t) is the argument of the reflection coefficient,

R(t) = |R(t)|e2iδ(t). (29)

In the same approximation the imaginary part of the resonance
position, k2, is

k2R = ln |R(x1)|
2
√

n2 − m2
/
x2

1

. (30)

This semiclassical approximation is quite good even for not
too large m as indicated in Fig. 1.

The above arguments demonstrate that the total number of
resonances can be calculated from the real equation (28). As
in Eq. (22) one concludes that the mean number of resonances
with real part x1 less than x is given by the expression

N̄ (x) =
nx∑

m=−nx

[
Nm(x) − 1

2

]
(31)

with

Nm(x) = 1

π
�m(nx) + 1

π
δ

(
m

x

)
+ 1. (32)
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FIG. 1. (Color online) The black circles are the exact positions of the resonances with m = 23 and n = 1.5 (a), n = 2 (b), and n = 3 (c).
The blue full lines indicate the approximation (30). The additional levels are encircled by the red circles. The red stars show the approximate
formula (48).
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Consider first the case of TM modes. The reflection coefficient
in this case is given by Eq. (18) and one has

δTM(t) =
{

− arctan
( √

t2−1√
n2−t2

)
, 1 � t � n,

0, 0 � t � 1.
(33)

Therefore

N̄ (x) = 2
∫ nx

0

1

π

[√
n2x2 − m2 − m arccos

(
m

nx

)]
dm

+ 2
∫ nx

0

[
1

π
δTM

(
m

x

)
+ 1

4

]
dm = n2

4
x2 + n

2
x

− 2x

π

∫ n

1
arctan

( √
t2 − 1√
n2 − t2

)
dt. (34)

By integration by parts and contour deformation it is easy to
check that

2
∫ n

1
arctan

( √
t2 − 1√
n2 − t2

)
dt

= π

2
(n − 1) −

∫ ∞

0
R̃TM(t)

(
n2

n2 + t2
− 1

1 + t2

)
dt, (35)

where R̃TM(t) is the same as Eq. (18) but for the purely
imaginary argument

R̃TM(t) ≡ RTM(it) =
√

n2 + t2 − √
1 + t2

√
n2 + t2 + √

1 + t2
. (36)

Finally, these considerations lead to an expression similar to
Eq. (26):

N̄TM(k) = An2k2

4π
+ rTM

Lk

4π
+ o(k), (37)

where

rTM(n) = 1 + 1

π

∫ ∞

−∞
R̃TM(t)

(
n2

n2 + t2
− 1

1 + t2

)
dt, (38)

which agrees with the result in [8] obtained by a different
method.

Consider now TE modes. In this case the reflection
coefficient is given by Eq. (15) and its argument is

δTE(t) =

⎧⎪⎪⎨
⎪⎪⎩

− arctan
(

n2
√

t2−1√
n2−t2

)
, 1 � t � n,

0, t∗ � t � 1,

−π
2 , 0 � t � t∗,

(39)

where t∗ corresponds to the zero of the TE reflection coefficient
(Brewster’s angle), RTE(t∗) = 0,

t∗ = n√
n2 + 1

. (40)

Using these values we get

N̄TE(k) = An2k2

4π
+ rTE

Lk

4π
+ o(k), (41)

where rTE is given by the following expression:

rTE(n) = − 4

π

∫ n

1
arctan

(
n2

√
t2 − 1√

n2 − t2

)
dt + n − 2

∫ t∗

0
dt.

(42)

Similarly to Eq. (35) one can prove that

2
∫ n

1
arctan

(
n2

√
t2 − 1√
n2 − t2

)
dt

= π

2
(n − 1) −

∫ ∞

0
R̃TE(t)

(
n2

n2 + t2
− 1

1 + t2

)
dt, (43)

where, as above, R̃TE(t) is the TE reflection coefficient (15)
analytically continued to imaginary t ,

R̃TE(t) ≡ RTE(it) =
√

n2 + t2 − n2
√

1 + t2

√
n2 + t2 + n2

√
1 + t2

. (44)

Combining all terms together we obtain that

rTE(n) = 1 + 1

π

∫ ∞

−∞
R̃TE(t)

(
n2

n2 + t2
− 1

1 + t2

)
dt

− 2n√
n2 + 1

. (45)

The first two terms are the same as for TM modes (38) but
with the TE reflection coefficient. The last term is the new one
related to the change of the sign of the TE reflection coefficient.

Higher-order terms in Weyl’s expansions (37) and (41) are
not yet calculated so we prefer to use a conservative estimate
of them as o(k) although all numerical checks suggest that for
smooth boundary cavities it is O(1).

V. ADDITIONAL RESONANCES

Formula (45) is the correct description for resonances for
which the real part of the eigenmomentum k corresponds to
a nonzero reflection coefficient (i.e., m/x1 = t∗). This is due
to the fact that when the reflection coefficient is zero its phase
is not defined. For TE modes there is a special branch of
resonances for which semiclassically the real part does obey
m/x1 = t∗. The existence of such additional resonances was
first discussed in a different context in Ref. [16].

The approximate positions of these resonances can be
calculated as follows. Assume that the resonances have a large
imaginary part. As H (2)

m (x − iτ ) tends to zero when τ → ∞
one can approximate Eq. (7) by

s̃m(x) = 0, s̃m(x) = H (1) ′
m

H
(1)
m

(nx) − n
H (1) ′

m

H
(1)
m

(x). (46)

From Eq. (11) it follows that

H (1) ′
m

H
(1)
m

(x) −→
x→∞ i

√
1 − m2

x2
− x

2(x2 − m2)
. (47)

Using this expression one concludes that the solution of the
equation s̃m(x̃m) = 0 has the form

x̃m ≈
√

n2 + 1

n
m − i

(n2 + 1)3/2

2n2
. (48)

This approximation is better for large n when the imaginary
part is large but it gives reasonable results even for n of the
order of 1. In practice one may use (48) as the initial value for
any root search algorithm (cf. Fig. 1).

From Eq. (48) it follows that the ratio m/x̃m tends to t∗
defined in Eq. (40) so these resonances are not taken explicitly
into account in Eq. (45). Their number can be estimated

026202-4



TRACE FORMULA FOR DIELECTRIC . . . . III. TE MODES PHYSICAL REVIEW E 86, 026202 (2012)

as follows. The discussed resonances correspond to waves
propagating along the boundary whose direction forms an
angle with the normal exactly equal to Brewster’s angle,

sin θB = n√
n2 + 1

. (49)

If the length of the boundary is L, the possible values for the
momenta of such states in the semiclassical limit are

km sin θB = 2π

L m (50)

with integer m = 0,±1,±2, . . .. Therefore, the number of
additional resonances related to Brewster’s angle is

Nadd(k) ≈ Lk

π

n√
n2 + 1

. (51)

Comparing it with Eq. (45) we conclude that for a general
cavity the second term in the Weyl expansion for the averaged
number of resonances for TE polarization is the following:

rTE = 1 + 1

π

∫ ∞

−∞
R̃TE(t)

(
n2

n2 + t2
− 1

1 + t2

)
dt

± 2n√
n2 + 1

, (52)

where the plus sign is used when the above additional reso-
nances are taken into account and the minus sign corresponds
to the case when these resonances are ignored.

For small values of n the additional resonances are mixed
with other resonances and their separation seems artificial. For
large n the additional branch of resonances is well separated
from the main body of resonances and one can decide not to
take them into account. In this case, the minus sign has to be
used in Eq. (52) (see below Sec. VII).

When the cavity remains invariant under a group of
symmetry it is often convenient to split resonances according
to their symmetry representations. For reflection symmetries
it is equivalent to considering a smaller cavity where along
parts of the boundary one has to impose either Dirichlet or
Neumann boundary conditions. In this case the total boundary
contribution to the average counting function N̄ (k) is given by
the general formula

1

4π
[n(LN − LD) + rTE(n)L0]k. (53)

Here LN and LD are the lengths of the boundary parts with
respectively Neumann and Dirichlet boundary conditions and
L0 is the length of the true dielectric interface. It is this formula
which will be used in Sec. VII for dielectric cavities in the
shapes of a square and a stadium.

VI. OSCILLATING PART OF THE TRACE FORMULA

The quantization conditions (7) or (8) permit us also to ob-
tain the resonance trace formula for a circular dielectric cavity.
Let kj = k1j − ik2j be resonance eigenmomenta. Define the
density of resonances as follows:

d(k) = − 1

π
Im

∑
j

1

k − kj

= 1

π

∑
j

k2j

(k − k1j )2 + k2
2j

. (54)

In general, if xj are the zeros of a certain function F (x) which
has no other singularities then the density of these zeros (54)
formally is given by the expression

d(x) = − 1

π
Im

F ′(x)

F (x)
. (55)

In the semiclassical limit k → ∞ it is sufficient to consider
the semiclassical formula (16), i.e., F (x) = ∏

m Fm(x) and

Fm(x) = 1 − RTE

(
m

x

)
e2i�m(nx). (56)

A more careful discussion is performed in the Appendix. In
this manner one gets

d (osc)(k) = 2R

π

∞∑
m=−∞

Re

√
n2 − m2

x2

Rme2i�m(nx)

1 − Rme2i�m(nx)

= R

π

∞∑
m=−∞

√
n2 − m2

x2

∞∑
r=1

Rr
me2ri�m(nx) + c.c.

(57)

Here Rm = RTE(m/x) is the Fresnel reflection coefficient for
TE polarization (15).

The further steps are as usual; see, e.g., [8]. Using the
Poisson summation formula

∞∑
m=−∞

f (m) =
∞∑

M=−∞

∫ ∞

m=−∞
e2πiMmf (m)dm, (58)

the expression (57) becomes

d (osc)(k) = R

π

∞∑
M=−∞

∫ ∞

m=−∞
dm

√
n2 − m2

x2

∞∑
r=1

Rr
meiSM,r (m)

+ c.c. (59)

where the action is

SM,r (m) = 2πMm + 2r�m(nx). (60)

When k → ∞ the dominant contribution to the integral is due
to saddle point solutions msp determined from the equation
∂SM,r (m)/∂m = 0. It is plain that

msp = nx cos(θM,r ) (61)

with θM,r = πM/r . This saddle point corresponds geometri-
cally to a periodic orbit of the circle in the shape of regular
polygon with r vertices going around the center M < r times.
Expanding the action SM,r (m) around the saddle point (61)
one gets

SM,r (msp + δm) ≈ nklp − π

2
r + r

nx sin θM,r

(δm)2. (62)

Here lp = 2rR sin θM,r is the classical length of the periodic
orbit determined by M and r .

In the end one gets the trace formula for the resonances of
the circular dielectric cavity in the form

d (osc)(k) = 2k
n3/2

π

∑
M,r

Ap√
2πklp

Rr
pei[nklp−rπ/2+π/4] + c.c.,

(63)
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FIG. 2. (Color online) The black dots show the resonance spectra for TE modes of the circular dielectric cavity with n = 1.5 (a), n = 2 (b),
and n = 3 (c). The bottom red circles encircle the additional branch of resonances obtained by choosing initial conditions (48) and running a
root searching routine to solve the equation sm(x) = 0 with sm(x) given by Eq. (7). The ranges along the x axis are chosen such that every plot
contains around 12 000 resonances (counted with multiplicity).

where Ap = πR2 sin2 θM,r is the area occupied by a given
periodic orbit family, and Rp = RTE(n cos θM,r ) is the Fresnel
reflection coefficient for the TE scattering with an angle equal
to the reflection angle θM,r for the given periodic orbit.

Repeating the arguments presented in Eq. [8] we argue that
in general the oscillating part of the resonance trace formula
in the strong semiclassical limit has the form of a sum over all
classical periodic orbits,

d(E) =
∑

p

dp(E) + c.c., (64)

where the contribution of an individual orbit depends on the
orbit considered:

(a) For an isolated primitive periodic orbit p repeated r

times

dp(E) = nlp

π
∣∣ det

(
Mr

p − 1
)∣∣1/2 Rr

peirnklp−irμpπ/2, (65)

where lp,Mp,μp, and Rp are, respectively, the length, the
monodromy matrix, the Maslov index, and the total TE Fresnel
reflection coefficient for the chosen primitive periodic orbit.

(b) For a primitive periodic orbit family

dp(E) = n3/2Ap

π
√

2πklp

〈
Rr

p

〉
einklp−irμpπ/2 (66)

where Ap is the area covered by one periodic orbit family, and
〈Rr

p〉 is the mean value of the TE Fresnel reflection coefficient
averaged over a periodic orbit family.

The only difference from the corresponding results derived
in Ref. [8] is that the TE reflection coefficient is used instead
of the TM coefficient.

VII. NUMERICAL VERIFICATION

The numerical calculations of the resonance spectrum for
the TE modes of the circular dielectric cavity are presented in
Fig. 2. Notice that when the cavity refraction index n increases
the additional branch of the resonances (48) separates more and
more from the main part of the spectrum.

In Fig. 3 we plot the difference between the function
counting the numerically computed resonances with a real
part less than k (with radius R = 1) and the best fit to it of the
form [see Eq. (41)]

Nfit(k) = n2

4
(kR)2 + a1(kR) + a0, (67)

where a1 and a0 are fitting parameters.
For n = 1.5 and n = 2 we consider all resonances including

the additional branch. For n = 3 this branch is quite far from
the other resonances [cf. Fig. 2(c)] and it is natural not to
include it in the counting. The fitted values of the parameters
for these three cases are the following:

n = 1.5, a1 = 1.246, a0 = −0.66, n = 2, a1 = 1.122,

a0 = −0.50, n = 3, a1 = −1.189, a0 = 0.12. (68)

The term a1 has to be compared with the theoretical prediction
which follows from Eq. (52) (used with a plus sign for n = 1.5

0 50 100
kR

-10

0

10

N
(k
)-
N
fit
(k
)

(a)

0 50 100
kR

-10

0

10

N
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)-
N
fit
(k
)

(b)

0 20 40 60
kR

-10

0

10

N
(k
)-
N
fit
(k
)

(c)

FIG. 3. (Color online) Difference between the exact number of resonances and the fit (67) for n = 1.5 (a), n = 2 (b), and n = 3 (c). In
the last case the additional resonances in Fig. 2(c) are not taken into account. The blue solid thick line in the center indicates the difference
averaged over a large interval.

026202-6



TRACE FORMULA FOR DIELECTRIC . . . . III. TE MODES PHYSICAL REVIEW E 86, 026202 (2012)

5 5.5 6
l/R

0

15

|d
(l)
|2

(a)

5 5.5 6
l/R

0

15

|d
(l)
|2

(b)

5 5.5 6
l/R

0

15

|d
(l)
|2

(c)

FIG. 4. Density of periodic orbit length (Fourier transform of the resonance density) for n = 1.5 (a), n = 2 (b), and n = 3 (c). The vertical
dashed lines indicate the length of the shortest periodic orbits of the circular cavity; from left to right, triangle, square, pentagon, hexagon,
heptagon, and octagon.

and n = 2, and with a minus sign for n = 3):

n = 1.5, ath
1 = 1.247, n = 2, ath

1 = 1.124,
(69)

n = 3, ath
1 = −1.190.

The agreement with our numerical calculations is very good.
In Fig. 4 the Fourier transform of the resonance density

for the circular dielectric cavity with different values of the
refractive index is displayed. As expected from the trace
formula, this quantity has peaks at the lengths of classical
periodic orbits of the circle. Notice especially that the
triangular orbit is not confined for n = 1.5. Hence the Fresnel
reflection coefficient is small and induces damping, which can
be clearly seen in Fig. 4(a). As the index grows it is also shown
that the contribution of short-period orbits becomes closer and
closer to that of the closed billiard.

Our results were also compared for two nonintegrable
shapes. The following numerical results were obtained via
the boundary integral method. Briefly speaking, this consists
in discretizing the integral equations derived from Eqs. (4) and
(5); see more details, e.g., in Ref. [17].

In Fig. 5(a) we present the spectrum of the TE resonances
for the square cavity of side a = 1 with n = 1.5 and (−,−)
symmetry along the diagonals. For such a cavity the fit function
similar to Eq. (67) is

Nfit(k) = n2

16π
(ka)2 + a1(ka) + a0 (70)

and the best fit gives [see Fig. 5(b)]

a1 = 0.0304, a0 = −5.22. (71)

Due to the low value of the index the additional resonances
are also taken into account: the + sign in Eq. (52) is chosen.
The theoretical prediction for this symmetry class is obtained
from Eq. (53) as ath

1 = 0.0297, which agrees well with the
numerical calculations.

Finally the same procedure was done for the dielectric
stadium consisted of two half circles of radius R connected
by a rectangle with sides 2αR and 2R where α is called the
aspect ratio of the stadium. The calculations were restricted to
the symmetry class such that the associated function vanishes
along both symmetry axes of the stadium, which is again
called the (−,−) symmetry class. The resonance spectrum
for n = 1.5 is presented in Fig. 6(a).

The fit function is now

Nfit(k) = n2

4π

(
α + π

4

)
(kR)2 + a1(kR) + a0, (72)

where the aspect ratio α has been taken as 1 in the numerical
calculations. The best fit gives [see Fig. 6(b)]

a1 = 0.150, a0 = −5.24, (73)

which agrees well with the prediction for this symmetry class:
ath

1 = 0.152 [cf. Eq. (53)]. For the same reason as above the

0 20 40 60 80
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0

2

4

N
(k
)-
N
fit
(k
)

(b)

FIG. 5. (Color online) (a) Resonance spectrum for the dielectric square with n = 1.5 for the (−,−) symmetry class. (b) The difference
between the total number of resonances and the best quadratic fit. The blue solid thick line in the center indicates the difference averaged over
a large interval.
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FIG. 6. (Color online) (a) Resonance spectrum for the dielectric stadium with n = 1.5 for the (−,−) symmetry class. (b) The difference
between the total number of resonances and the best quadratic fit. The blue solid thick line in the center indicates the difference averaged over
a large interval.

additional resonances have been taken into account and the +
sign chosen in Eq. (52).

VIII. SUMMARY

Trace formulas are the main tool of the semiclassical
description of multidimensional quantum problems. For closed
systems the trace formulas relate two objects: the quantum
density of discrete states and a sum over classical periodic
orbits,

d(E) ≡
∑

n

δ(E − En) ≈ d̄(E) +
∑

periodic orbits

ApeiSp(E)/h̄

+ c.c., (74)

where Sp(E) is the classical action over a periodic orbit and
d̄(E) is the mean density of eigenenergies, averaged over a
small window around E. For 2D billiards with area A and
perimeter L this averaged density of states is

d̄(E) = A
4π

+ r
L

8π
√

E
+ o(E−1/2), (75)

where r = 1 for the Neumann boundary conditions and r =
−1 for the Dirichlet ones.

For open quantum models the true eigenenergy spectrum
is continuous and the main object of interest is the discrete
spectrum of resonances defined as the poles of the S matrix
in the complex plane: En = en − in/2 with en and n real.
The real part of the resonance energy, en, gives the position
of the resonance while its imaginary part, n, determines the
resonance width.

The analog of the trace formula for open systems has a form
similar to Eq. (74),

1

π

∑
n

n/2

(E − en)2 + 2
n/4

≈ d̄(E) +
∑

periodic orbits

ApeiSp(E)/h̄

+ c.c. . (76)

In Ref. [8] such a formula has been obtained for a 2D dielectric
cavity with transverse magnetic polarization of the field. Here
we derive the trace formula for a 2D dielectric cavity but with
boundary conditions corresponding to the transverse electric
polarization of the electromagnetic field. As expected, the
oscillating part of this trace formula is given by the usual

periodic orbits weighted in the leading semiclassical order by
the Fresnel coefficient corresponding to TE reflection on the
cavity boundary (65) and (66).

Our main result is the expression for the average resonance
density of a dielectric cavity with area A, perimeter L, and
refraction index n,

d̄(E) = An2

4π
+ rTE(n)

L
8π

√
E

+ o(E−1/2), (77)

where

rTE(n) = 1 + 1

π

∫ ∞

−∞
R̃TE(t)

(
n2

n2 + t2
− 1

1 + t2

)
dt

± 2n√
n2 + 1

(78)

and R̃TE(t) is the Fresnel reflection coefficient for the TE
polarization at imaginary momentum,

R̃TE(t) =
√

n2 + t2 − n2
√

1 + t2

√
n2 + t2 + n2

√
1 + t2

. (79)

The plus-minus sign in front of the last term in Eq. (78)
is connected with the existence for the TE modes of an
additional series of resonances related to Brewster’s angle.
As these resonances have large imaginary parts, they may be
included or not in the counting function. For small values of
n additional resonances are mixed with other resonances and
their separation is artificial. In this case the plus sign has to
be used. For large n the branch of additional resonances is
well separated from the body of resonances and it is natural to
ignore them. This corresponds to the minus sign in Eq. (78).

The results of this paper together with Ref. [8] demonstrate
that semiclassical trace formulas can be derived and applied for
open dielectric cavities in close similarity with closed billiards.
Further investigation of trace formulas for other physical open
systems is of considerable interest.
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APPENDIX: KREIN FORMULA APPROACH

The purpose of this appendix is to present another derivation
of the number of resonances in a circular dielectric cavity based
on the Krein spectral shift formula [18]. This approach was
also suggested in Ref. [19]. The true eigenenergy spectrum for
an open system is continuous and, consequently, the density of
states for open quantum systems is infinite. Nevertheless, the
difference between the density of states with a cavity and the
density of states without the cavity is finite and is given by
the Krein formula

d(E) − d0(E) = 1

2πi

∂

∂E
ln det S(E) (A1)

where S(E) is the S matrix for the scattering on the cavity.
This formula is general and can be used for any type of

short-range potential. We apply it for scattering on a circular
dielectric cavity. It is easy to check that the S matrix for the
scattering on a 2D circular cavity with TE boundary conditions
(5) is diagonal in polar coordinates and

Sm(x) = − s̃m(x)

sm(x)
, (A2)

where sm(x) is given by Eq. (7) and s̃m(x) differs from sm(x)
by the change of H (1)

m (x) to H (2)
m (x):

s̃m(x) = x

[
1

n
J ′

m(nx)H (2)
m (x) − Jm(nx)H (2) ′

m (x)

]
. (A3)

From properties of the Bessel functions [15] it is straightfor-
ward to show that

s ′
m

sm

(x) = − (n2 − 1)

n2

× Jm(nx)H (1)
m (x)m2/x2 + nJ ′

m(nx)H (1)′
m (x)

J ′
m(nx)H (1)

m (x)/n − Jm(nx)H (1)′
m (x)

. (A4)

Using the equality Jm(x) = [H (1)
m (x) + H (2)

m ]/2, this expres-
sion can be rewritten in the form

s ′
m

sm

(x) = −n2 − 1

n2

Am(x) + Bm(x)Em(x)

Cm(x)[1 − Rm(x)Em(x)]
, (A5)

where Em(x) and Rm(x) are defined in Eqs. (9) and (10),
respectively, and

Am(x) = m2

x2
+ n

H (2)′
m

H
(2)
m

(nx)
H (1)′

m

H
(1)
m

(x), (A6)

Bm(x) = m2

x2
+ n

H (1)′
m

H
(1)
m

(nx)
H (1)′

m

H
(1)
m

(x), (A7)

Cm(x) = H (2)′
m

nH
(2)
m

(nx) − H (1)′
m

H
(1)
m

(x). (A8)

Expanding this expression into series of Em(x) gives

s ′
m

sm

(x) = Qm(x) + Pm

∞∑
r=1

Rr
m(x) Er

m(x), (A9)

where

Qm(x) = − (n2 − 1)Am(x)

n2Cm(x)
(A10)

and

Pm(x) = −
4i(n2 − 1)

[
m2

n2x2 + (
H

(1)′
m

H
(1)
m

(x)
)2]

πn2xH
(1)
m (nx)H (2)

m (nx)Cm(x)Dm(x)
. (A11)

with

Dm(x) = H (1)′
m

nH
(1)
m

(nx) − H (1)′
m

H
(1)
m

(x). (A12)

In the semiclassical limit x → ∞ the above formulas are
simplified by using the asymptotic of the Hankel function
(11):

H (1,2)′
m

H
(1,2)
m

(x) −→
x→∞ ±i

√
1 − m2

x2
− x

2(x2 − m2)
+ O(x−2).

(A13)

Consider first the smooth term (A10). From the identity(
1

n2

√
n2 − t2 +

√
1 − t2

)
(
√

n2 − t2 −
√

1 − t2)

= n2 − 1

n2
(t2 +

√
n2 − t2

√
1 − t2) (A14)

it is straightforward to check that

Qm(x) −→
x→∞ −i

[√
n2 − m2

x2
−

√
1 − m2

x2

]

− x

2
RTE

(
m

x

)[
n2

n2x2 − m2
− 1

x2 − m2

]
, (A15)

where RTE(t) is the Fresnel reflection coefficient for the TE
polarization given by Eq. (15).

The difference between the density of states with a cavity
and the one without the cavity averaged over an energy interval
such that periodic orbit terms are small can be calculated from
Qm(x):

〈d(E)〉 − d0(E) = − R

2πk

∞∑
m=−∞

ImQm(x). (A16)

Changing the summation over m to integration and turning
the integration contour in the second term in Eq. (A15) in the
complex plane to avoid poles, m → −it , leads to

〈d(E)〉 − d0(E)

= R

2πk

[ ∫ nx

−nx

√
n2 − m2

x2
dm −

∫ x

−x

√
1 − m2

x2
dm

]

+ Rx

4πk

∫ ∞

−∞
dtRTE

(
−i

t

x

)[
n2

n2x2 + t2
− 1

x2 + t2

]
.

(A17)

Rescaling integration variables, one gets

〈d(E)〉 − d0(E) = A
4π

(n2 − 1) + L
8π2k

∫ ∞

−∞
dt R̃TE(t)

×
[

n2

n2 + t2
− 1

1 + t2

]
, (A18)

where A = πR2 and L = 2πR are the area and the perimeter
of a circular cavity.
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This formula differs from the averaged total number of
resonances (41) and (45). This is the consequence of the fact
discussed in Ref. [8] for the case of TM modes that the S

matrix for the scattering on a cavity has an additional phase
(and additional zeros) connected with the outside scattering on
the impenetrable cavity.

The form of this “additional” S matrix may be argued as
follows. It is known that when a wave from outside the cavity
scatters on a cavity it reflects with a reflection coefficient which
differs by its sign from the reflection coefficient from inside the
cavity (this is a consequence of current conservation). For the
TE polarization the Fresnel reflection coefficient for scattering
from a medium with the refraction index 1 on another medium
with the refraction index n is −RTE where RTE is given by
Eq. (15). In the semiclassical region accessible in outside
scattering, |t | < 1, the reflection coefficient −RTE(t) is real
and the “effective” reflection coefficient corresponding to the
scattering on an impenetrable cavity equals the sign of −RTE(t)
[cf. (39)],

R
(eff)
TE =

{−1, t∗ � |t | � 1,

1, 0 � |t | � t∗,
(A19)

where t∗ = n/
√

n2 + 1.
The reflection coefficient equals −1 (+1), corresponding to

scattering with Dirichlet (Neumann) conditions on the cavity
boundary. For a circular cavity the S matrices with Dirichlet
and Neumann boundary conditions are well known (see, e.g.,
Ref. [20]):

S(D)
m (x) = −H (2)

m

H
(1)
m

(x), S(N)
m (x) = −H (2)′

m

H
(1)′
m

(x). (A20)

The additional S matrix for the TE scattering is thus formally

det
[
S

(TE)
0 (x)

] =
−(m∗+1)∏
m=−∞

S(D)
m (x)

m∗∏
m=−m∗

S(N)
m (x)

×
∞∏

m=m∗+1

S(D)
m (x), (A21)

where m∗ = [xn/
√

n2 + 1].

To find the total phase of this additional S matrix one can
proceed as follows. To the leading order in the semiclassical
limit x → ∞ the Dirichlet and Neumann S matrices (A20)
can be calculated from Eq. (11). It gives

S(D)
m (x) ≈ −e−2i�m(x), S(N)

m (x) ≈ e−2i�m(x), (A22)

where �m(x) is given by Eq. (12). This means that S(N)
m differs

from S(D)
m only by its sign, which is another manifestation of

the opposite sign of the reflection coefficient (A19). Therefore
one can rewrite expression (A21) as follows:

S
(TE)
0 ≈ S(D)

m∗∏
m=−m∗

(−1) ≈ S(D)e±2iπxn/
√

n2+1, (A23)

where S(D) = ∏∞
m=−∞ S(D)

m is the full S matrix for scattering
on a cavity with the Dirichlet boundary condition. The ±
sign in the exponent reflects the ambiguity of the phase,
−1 = e±iπ .

The calculation of the mean density of states related to the
S(D) matrix is straightforward (see, e.g., Ref. [20]):

dD(E) − d0(E) = − A
4π

− L
8πk

, (A24)

and finally from Eq. (A23) and the Krein formula (A1) one
finds that the change of the density of states due to the
additional S matrix (A21) is

d̄0(E) − d0(E) = dD(E) − d0(E) ± L
8πk

2n√
n2 + 1

= − A
4π

− L
8πk

(
1 ∓ 2n√

n2 + 1

)
. (A25)

The total density of resonances is thus the difference between
(A18) and (A25). In the end one gets Eqs. (41) and (45). The
ambiguity in the phase of the additional S matrix corresponds
to the possibility of including resonances related to Brewster’s
angle in the Weyl formula or not, which has been discussed in
Sec. V.
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